Improved Representation Learning for Question Answer Matching
نویسندگان
چکیده
Passage-level question answer matching is a challenging task since it requires effective representations that capture the complex semantic relations between questions and answers. In this work, we propose a series of deep learning models to address passage answer selection. To match passage answers to questions accommodating their complex semantic relations, unlike most previous work that utilizes a single deep learning structure, we develop hybrid models that process the text using both convolutional and recurrent neural networks, combining the merits on extracting linguistic information from both structures. Additionally, we also develop a simple but effective attention mechanism for the purpose of constructing better answer representations according to the input question, which is imperative for better modeling long answer sequences. The results on two public benchmark datasets, InsuranceQA and TREC-QA, show that our proposed models outperform a variety of strong baselines.
منابع مشابه
Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of questionanswer pair firstly, and then uses the joint representation as input of the...
متن کاملUsing Generalized Language Model for Question Matching
Question and answering service is one of the popular services in the World Wide Web. The main goal of these services is to finding the best answer for user's input question as quick as possible. In order to achieve this aim, most of these use new techniques foe question matching. . We have a lot of question and answering services in Persian web, so it seems that developing a question matching m...
متن کاملA Simple Loss Function for Improving the Convergence and Accuracy of Visual Question Answering Models
Visual question answering as recently proposed multimodal learning task has enjoyed wide attention from the deep learning community. Lately, the focus was on developing new representation fusion methods and attention mechanisms to achieve superior performance. On the other hand, very little focus has been put on the models’ loss function, arguably one of the most important aspects of training d...
متن کاملدستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملAn Improved Semantic Schema Matching Approach
Schema matching is a critical step in many applications, such as data warehouse loading, Online Analytical Process (OLAP), Data mining, semantic web [2] and schema integration. This task is defined for finding the semantic correspondences between elements of two schemas. Recently, schema matching has found considerable interest in both research and practice. In this paper, we present a new impr...
متن کامل